
Milk development and deployment

Setup

Requirements and tools

Operating system: Windows (10)

Source control: Github.

Tools: Visual Studio (2017), Visual Studio Code, git bash, RDP (Remote Desktop Manager), IIS Manager

Languages and technologies: ASP.NET Web Forms (C#), javascript, jQuery, HTML/CSS, nodejs, gulp, SQL

CMS: Kentico

Setup

Enable IIS Services on your Windows computer. Go to Control Panel -> Programs -> Programs and

Features -> Turn Windows features on or off and make sure IIS Services are turned on as shown on the

picture below. Restart your computer if needed.

Clone the repository from github. Open git bash in, preferably, C:\inetpub\wwwroot folder and clone

your repository by typing git clone

https://github.com/mightyrockca/milk.org.git. You will have to log into github and

be assigned to the project in order to be able to clone the repository.

After the project is downloaded, set up local hosting in IIS. Open Internet Information Services (IIS)

Manager application on your Windows computer and create a website from the cloned repository. Right

click on Sites, choose Add website and configure it as shown below.

https://github.com/mightyrockca/milk.org.git

Once the website is created, right click on a newly created website and click Edit Bindings… and add

other bindings like shown in the image.

Navigate to C:\Windows\System32\drivers\etc and edit hosts file with admin privileges. Add bindings

like in the picture.

Change the connection string in your web.config file.

<add name="CMSConnectionString" connectionString="Data Source=milkorg-db-

dev.c7lxjrdhazjl.ca-central-

1.rds.amazonaws.com;Initial Catalog=milkorg;Integrated Security=False;Persist Sec

urity Info=False;User ID=admin;Password=vifMc6rXhF3QX2VT0led;Connect Timeout=120;

Encrypt=False;Current Language=English;" />

Development

For the Milk project we use Jira as a Product Management Software. Development process is pretty

much straightforward.

New tickets have a To Do status. When developer works on a ticket it should be in In Progress status,

and once it's finished it should be in Ready for Deployment status.

We use Visual Studio for any backend development, meaning pages, web parts etc. Anything in C#.

Building the website through Visual Studio creates new CMSApp.dll file which should be included in the

commit as it contains compiled code. This is required if any of .cs files were changed.

Frontend changes like CSS and js can also be done in Visual Studio, but my preference is Visual Studio

Code as it is pretty easy to set up for these type of changes. For some of these we will need nodejs and

gulp installed. This is required for bundling scss and js files in UI projects such as

UIDFOIndustryResources, UIIndustryNews, UISavourOntario. Development here is done through

individual css and js files which are later bundled and published. Instructions for this can be found in

Readme files for each of these projects.

Source control is done through github, and again my preference for source control in general is Visual

Studio Code with its built-in terminal since it has an easy to use interface for this.

The main development branch, currently, is sprint6-dev branch.

While working on changes, it helps keeping track of changed files to ease up the deployment process.

The changed files also can be found on github by going through commits.

Any non code related changes are done through CMS. Kentico knowledge required.

Keeping track of changed objects or content is prefferable as it will ease up the deployment process.

Database changes are usually not neccessarry as this is mainly done through CMS interface.

Deployment

The tickets that are in Ready for Deployment status need to be moved to the server.

We have one development server. Developer sets up local website and uses a shared database from the

server.

Currently there are three servers to help with the smooth transition of new releases.

QA server is usually the first one that the new changes are deployed to and is used for initial testing of

the changes.

UAT server is the one we typically use for training as well as preparing content for production

deployment.

Production server is the one that is live and should be as bug free as possible with latest content

available for end users.

Code deployment

Once the ticket is in Ready for Deployment status, it's time to deploy the changes to the QA server in

order for them to be tested by QA Engineers.

When there were code changes, we need to manually deploy the files that were changed. Log into

remote QA server via RDP protocol. For this we can use Windows built-in Remote Desktop Connection

application, enter username and password and we are in. We can also use Remote Desktop Manager

tool (my preference), as we can set up multiple servers and connect to them in one click.

Once we are connected to the server it's time to deploy the files. The way we usually do this is create a

new folder as a deployment package and copy all the changed files from the local website into the

folder. It helps keeping the same file structure as the original one as it will be easier to replace them on

server.

First copy all the files and/or folders that contain the changes that need to be deployed and make a

folder for it. For exampe:

Zip the folder and move it to the server. Once it is on the server, unzip the folder. It is prefferable to

make a copy of the same files that are changed on the server as a backup. Once all this is done, simply

copy the files into the appropriate locations on the server. The file structure must remain the same. The

easiest way to find the currently active website folder is through IIS. Open IIS Manager, right click on the

website and select Explore. This will open up File Explorer in the folder that we are deploying to.

Once all the files are replaced it's time to deploy CMS changes.

Content deployment

Content deployment means two things. Deploying content in terms of pages, and deploying kentico

objects that are part of development.

Pages are most easily deployed through Kentico's staging feature. Select the server you want to deploy

to in the Server dropdown. To deploy pages simply select pages, or page trees you want to sync to the

server and click Synchronize current page or Synchronize current subtree.

For other Kentico objects we typically use Import/Export feature in Sites application. These object can

also be synced through staging feature if it's configured to track the changes.

To export objects go to Sites and click Export. File name is generated, although it can be changed. Select

the site you want to export objects for, and select one of the three selection options depending on what

you need. I usually choose the second one to select only objects changed after some date.

On Step 2 check if everything you need is selected and click Next.

Once the export file is generated click Click to download the package file, download the file and click

Finish.

The downloaded file is ready to be imported on the target server. Go to Sites application and click

Import site or objects. Click Upload package and select the file we created previously. Preselect all items

as, during export, we only selected the ones that were changed.

On Step 2 select Import object into an existing site and select the site you want to import objects to.

On Step 3 check if everything you need is there and selected and click Next.

With this we are done with the deployment. On the System application click Clear cache, and then

Restart application to make sure the sites are running with the latest changes.

